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CONTACT PROBLEMS

ABSTRACT A solution method for small deformation frictionless contact
problems is developed. First, a review of various solution methods for
contact problems is given. Next, a detailed discussion is made of the
augmented Lagrangian method. Then, the finite element implementation
is discussed. Finally, sample problems and their solutions are presented

to demonstrate the usefuiness of the method. Both the static and dynamic
solution algorithms are described in this report. . ... '
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An Augmented Lagrangian Formulation for the Finite
Element Solution of Contact Problems

Joseph A. Landerst and Robert L. Teylor:

Department of Civil Engineering,
University of California, Berkeley.

1. Introduction

While solutions to contact problems have been available for years [1], tech-
niques applicable to a wide range of problems with a minimum amount of user
intervention have been quite limited. This is true not only of static contact
problems, but also in dynamic impact situations as well.

In this report, a study is first made of various frictionless, small deforma-
tion contact algorithms. The advantages and disadvantages of each are dis-
cussed. Next, the augmented Lagrangian solution method is presented in the
context of finite element contact problems. This discussion covers both the
static and dynamic algorithms. The genex"ality of the augmented Lagrangian
method is shown by examining how the other methods may be derived from it.
Several examples are presented, and comparisons are made to work done by
previous researchers. Finally, recommendations are made for future studies in
contact problems.

? Research Assistant
¢ Professor and Chairman

This work was funded by a grant from the Naval Civil Engineering Laboratory at Port
Hueneme, California. The suthors gratefully acknowledge their suppors.
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2. Contact Solution Algorithms

Contact solution algorithms are generally based upon either the classical
Lagrange procedure or the penalty function method. In the context of linear-
ized elasticity. finite element solutions can be viewed as the minimization of the
potential energy functional presented in equation (1).

M) = f V() dv - f pb.udv - f t-unda (1)
B,UB, B,UB, dB,UeB,
Where Wis the stored energy function, pb is the body force vector, t is the sur-
face traction specified on the boundary and y is the displacement field. The
integrals are taken over both bodies and their boundaries. Application of stan-
dard finite element procedures leads to equation (2), the discrete form of the
functional.

M(u) = ¥u*Ku - u'R ' ()

Where K is the system stiffness matrix, f is the vector of nodal forces, and u is
the displacement vector of nodes in the mesh. In the case of finite element con-
tact problems, a further requirement states that penetration of the two bodies
does not take place.

(@5, U Glp) =0 (3)
Where ﬁfa, and ﬁ!a, are the positions in either deformed body, taken over the

contact interface, and nis the normal between the bodies.
Application of equation (2) subject to the constraint of equation (3) is
equivalent to an optimization problem, which may be stated as:
minimize: [{(u) (4.2)
with the constraint: glu=0 (4.b)

The purpose of this report is to discuss solution schemes for the expressions
listed in equations (4).

2.1. The Penalty Method

Optimization problems that involve constraints, such as those presented in
equation (4.b), are frequently converted to unconstrained problems by using
these constraint equations to establish relationships between the unknowns [2].
By writing equation (2) with the addition of a fictitious energy term, a new func-
tional is defined.

IT'(u) = (u) + 42‘—\:‘ gg'u, where: u>0 (5)

The last term contains the constraint, gu, times a penalty term, u. Because

»
oy S
-

SAASAS
DA~
'-' .l 'lﬂi

Y

-~

B0

’

v

Ya
+ 3]
% P

|
T,

:‘.'r‘.( o
L4

.
(4

.f
RN s



S -

& srummpv . -

¢ Y TREEET.T.TaT & F F TR e
o
»

solution to finite element problems involve the minimization of equation (5). the
answer will tend to have a small value for géu. Taking the first variation of (5)
equation (8) is found.

é6utKu - Su'R + dufugg‘u=10 (8)
By the fundamental lemma of variational equations, this becomes:

[K+pge'lu=R )

Several comments are applicable to the penalty method. First, the correct
choice of the penalty parameter, u, is the essence of the algorithm. Since the
penalty approach satisfles the contact conditions only approximately, valid
results from equation (4) are highly dependent on the value of 4.

Figure 1: The eflect of the penalty term, one dimensional case.

In Figure 1, a plot of the two functionals is shown. The addition of the penalty
parameter to equation (2), as stated in equation (5), can be seen as rendering
the functional convex [3]. This is true even if [I(u) is not already convex, for
points near the solution. Also note that in Figure 2, the minimum of the func-
tional with the penalty term will approach the minimum of the functional
without the penalty term only as u-e,

Issues such as u-= bring forward a major problem with the penalty
method: the matrices used in the solution of the finite element problems may
exhibit poor numerical conditioning. While large penalty values insure a tighter
tolerance for the constraint, these values make an accurate solution of the
linear system of equations much more difficult.
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Figure 2: The effect of increasing the penalty parameter.
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The following problem will serve as a basis of comparison for the various
contact solution algorithms. This system consists of two springs connected in
series. One end is fixed, while at the other, a concentrated force is applied. The
constraint requires that the displacements of nodes 1 and 2 remain equal. Fig-
ure 3 illustrates the system and external loading. By applying the penalty

WA,

s

o method, the matrices corresponding to equatwn (7) are:
E 2k —k] _ 0 _ 1
B K=le k] Rely | ®
E This leads to a linear system of equations: '
S f 2k + p o~k + p.) (9)
~(k+p) k+p- “u] [qJ
t:‘ This system bhas the solution:
8 [ g |
N )] k
l“ I: (10)
- 2 g]2k +u
" klk +pu
*
E The exact solution is shown in equation (11).
[q]
3 bl [E ”
- - 1 1
: bl 2
E
A
-4-

Lot A
.
'
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.....................................




m.w AR TAZIA S M N L A & A s Sl St SN e A

|/ gapdistance i

Figure 3: A sample finite element system.

Note that the condition number of the stifflness matrix can easily be found to

be:

Amax _ 3k + 2u + V5k? + Bku + 4u? (12)
Mmin g 2u - Vsk2 + Bku + 4u?

cond(K) =

As Figures 4 and 5 illustrate, increasing penalty values lead to more accu-
rate solutions, but they also lead to more poorly conditioned matrices. Because
of the extreme importance of u, & natural question to ask is: how can an
optimal value for the penalty parameter u be found?

In order to find an answer to this question, the errors involved in solution
of the finite element contact problem must be examined in some detail. Two
sources of error eflect the accuracy of the penaity method: the large perturba-
tion that results from a small penalty parameter, and the rounding errors due
to large penalty values in finite precision arithmetic on the computer [4]. A
study of the perturbation errors is done first.

Applying the Sherman-Morrison formula to equation (7)., the following
expression for the dxsplacements by the penalty method is obtained.

- ‘K‘
u, = lK . l+ pg‘K“ J (13)
The exact solution can be found by letting u-=:
[ 1ggti-1]
w = [k - K_g«‘k%_] R (14)

....................................
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Figure 4: The effect of 4 on the gap distance.

The error in u is:

[K-l K—l #K-l ¢ 1 ]
—u = [KlegK' g K-
o Tk T Teagng N (e

Upon expanding the last term as a serijes, this becomes:

[ -1 -1 ~1ggt k-1 -1 - -1 -1 ]
Klegk' Kggk!  KiggK'  KlggK' . .. p (16)
e'K'e eK'e ueK'gl uieK'e)

Canceling the first two terms, dropping items in u with powers greater than one,
and taking norms of both sides (16) can be written as:

u = U, =

1 K“gng"
- N - 17
ﬂ“p u." “ﬂ 2K n (17)
Dividing both sides by ll u, ll , (17) is transformed to:
H nx"ggfl(“ Rﬂ
Up = K-!
- ] ‘;17 T : g (18) ’
I"‘H K“ - K-lpggt K-} 1]
£K'g ]
Simplifying, equation (19) is found:
I = u, ' K-! -1
1tK gg‘_ls R] 1 ~ (19)
u, “) eK'e | fxgxigr| + "K"gg‘x“ Rﬂ
-8-
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For some constant a, this expression can be written as:

Y ~ U, 1 [

< - (20)
u, o “g‘K"gu

In practice, for a reasonably large u, @ has a value near unity.

b v

—
3 >
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Log ( Penalty Value )

Figure 5: The effect of u on the condition number.

A standard approximation for rounding errors is given in [5] as an expres-
sion of the formu:

-

where u, represents the result computed using finite precision arithmetic, u,

< b2~tcond (K) (21)

identifies the result computed if exact arithmetic is used. The symbol b
represents some constant, while t represents the number of binary digits of
floating point precision. On the DEC VAX* series of computers, using double
precision instructions, t has a value of 36. An approximation for the condition
number of the system matrix K is:

cond (K) = ?{:T- (22)
n

Here, Ay, is smailest diagonal stiflness matrix coefficient that is in the contact

®* VAX is a trademark of the Digiial cquipment Corporaiion
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region. Hence, the total error is represented by summing both, as in equation

(23).
Y — U, Uy — U -t
. ~l o _, ubE (23)
S ) T
Differentiating this expression and setting it equal to zero, the minimum is:
%
K,
= @ Koin | (24)
b2t [gxig] |
Assuming that the following approximation holds:
Jerxig) » 2 (25)
Kenn
equation (24) then becomes:
K %
TR [E?_f-g-] (28)

for some constant c. In practice, c has a value near unity when u is reasonably
large. Equation (26) represents a recommendation for the penalty value, within
the limitations presented in its derivation.

To summarize, penalty methods have several advantages. Despite the con-
ditioning and accuracy problems, the resulting solution requires no extra
efforts beyond adding the contact components to the stifflness matrix. Further-
more, these methods are easy to implement and have a certain intuitive appeal
to engineers. Finally, the contact force conjugate to the contact constraint,
although not explicitly found by this method, can be computed using an extra

procedure.

F 2.2. The Lagrange Multiplier Method

The classical Lagrange methods were among the first methods used to solve
contact problems. With this method, the functional of equation (2) is amended
{ with an additional term. This defines the new system listed in equation (27).

[I'(wA) = [I(u) + Atgiu (27)
Taking the variation of (27) yields the following two equations:

6u‘Ku - 6u'R + fufgh = 0 (28.a)
SAglu=0 (28.b)

By the fundamental lemma of variational equations, this leads to the system:

Ik glld I
et of] = o

................
...........................
.............

..................
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The set of equations expressed by equation (22) may be indefinite but
non-singular [2]. Unlike the standard penalty method, the dimensions of the
matrices increase with this approach. Additionally, as illustrated by equation
(29). the matrix contains a zero sub-matrix along its diagonal. In a practical
finite element system, these zero diagonal terms are not automatically available
in a sub-matrix, but are scattered throughout the system stiffness matrix.
Thus, care must be exercised when the solution is found; special procedures
should be used which effectively re-order the system of equations.

Despite these disadvantages, classical Lagrange multiplier methods allow
the contact conditions to be satisfied exactly. Also, the A value has a straight-
forward physical significance; it is the value of the contact force conjugate to
the constraint condition.

An illustration of how the classical Lagrange method is used in contact
problems is demonstrated by again considering the two spring problem. Apply-
ing equation (29), the linear system of equations can easily be found:

]
2k —& 1l Dol
-k k ~1llus| =g (30)
1 -1 0)|a 0
4
This system has the solution:
1
a
ll k
|=|2 (31)
Mo

The results are the exact values for the displacement and contact force.

2.3. The Perturbed Lagrangian Method

An interesting extension to the classical Lagrange method is offered in
references [8] and [7]. Here the functional described by equation (27) is
modified with an additional term:

IT'(wA) = II(u) + Atgtu -~ -zlu-k‘ A where: u>0 (32)

The effect of the last term is to fill in the zero sub-matrix of equation (29).
The resulting stiffness matrix no longer contains the zeros along the diagonal,
the classical Lagrange functional is recovered by allowing u-. Superficially, it
might be observed that this approach still suffers from one problem of the clas-
sical Lagrange method; an increase in the number of degrees of freedom of the
system. However, this problem can be circumvented in a clever manner when

.
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’. S
j‘ the method is applied to finite element systems. To see how this may be done, ;’
;$ consider the first variation of equation (32). :_‘:

.
Y

SutKu - 6u'R + [ Aéulgda = 0 (33.2)

s - ' :
2. l'ax—l+¢u da =0 . (33.b)
. . 7} o

) £y
N o

Where the integral extends over the area of contact between the two bodies. )
> Since 6A is arbitrary and u is a given constant, equation (33.b) can be written L
Y
as:

9
3 lfxda=[gu¢a (34) 5y
“ b, (] ) ‘ ‘

- In the framework of finite element analysis, the displacement fleid is generally :::,“:
.:' approximated over each element region by some polynomial. If this approxima- ::»‘_:
N tion is linear, the strain fleld is constant function. Thus assuming that the con- N

-

' tact force, A, is constant over the region of interest, the above expression can -
- be transformed to: ' -
- A= £ [gtuda (35) -
:.: AC [ .
‘) Because of the linear approximation, the integral can be evaluated by means of
the trapezoidal rule. Hence, A, can be approximated to: ;:-:
I
N = ug'u (38) i
“.' : l:.‘-
.2 The point of this exercise is that equation (33.a), after applying the funda- Y

mental lemma of variational equations, becomes the expression presented in

é' equation (37).
o Ku-R+gr=0 (37)
" Applying the results of (36), a new expression is found.
7 Ku-R+pggfu=0 (3s)

S Thus, the two equations in (33) can be reduced to a single system that does not

N increase the number of degrees of freedom. Equation (38) is essentially that of

-1 equation (7), except for the following points. First, an explicit expression for .

! the contact force is directly available through the use of equation (38). Second, ::::'
L. while a solution is sought, using the Lagrange approach, to the following: 1
E minimize: [I(u) (39.a) E::
*, with the constraint: gu =0 (39.b) -—-_
f} What instead is obtained by using the perturbation is: "
: s




......

minimize: [I(u) (40.2)
with the constraint: g'u - £-= 0 (40.b)

Clearly, one can see that .the solutions are equivalent only as u-w=, but as was
seen in the standard penalty approach, increasing u leads to numerical
difficulties.

Again, the two spring problem is presented within the context of the per-
turbed Lagrangian method in order to illustrate how it may be applied to finite
element systems. The system of linear equations is:

[ - lhe,] ol
et = @

This has the solution:

he,] | L
l"l']: gl2k + pu
k

k+u
Note that as u-+, the exact solution is found.

A = —q[ﬁ;] (42)

2.4. The Augmented Lagrangian Method

Until now, the methods considered have had some considerable implemen-
tation drawbacks. The penalty and perturbed Lagrangian methods had solu-
tions which are highly dependent on the penalty parameter u. Although it is
possible through the use of an expression like that presented in equation (26)
to get a reasonably good value for u based on conditioning considerations, such
a value says nothing about how accurate a given solution might be. Moreover,
the classical Lagrange method, while it promises the exact results, requires that
the resulting larger system of equations effectively be re-ordered during the
solution of the system. One might ask if it is possible to develop a method
which, while retaining a relatively easy implementation, minimizes the disadvan-
tages of the penalty and Lagrange methods. To this end, consider the following
functional in equation (43).

IT(wA) = I(u) + Atglu + Lz"—u‘gg‘u . where:u>0 (43)
Equation (43) can be viewed as a classical Lagrangian method:
minimize: [1(u) + %u‘gg‘u {44.2)

with the constraint: glu=0 (44.b)
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because the addition of the penalty term to equation (44.a) does not change the
optimal values of u or the Lagrange multipliers A . Also, note that the system
can also be seen from the penalty viewpoint:

minimize: [I(u) + A'glu (45.a)
with the constraint: gu=0 (45.b)

Observe that, if the correct values of the Lagrange multipliers A° are used,
equations (45) can be written:

minimize: [l(u) + (A*)*glu (48.a)
with the constraint: glu=0 (48.b)

Or, by applying the penalty approach:
IT(wA) = () + (A*)fgtu + -‘ziu'gg*u (47)

Taking the first variation of equation (47) and noting that since A’ is the exact
value, the result must be equal to zero:

u‘Ku - Su'R + Sufgh’ + udufgglu=10 (48.a)
(XY gu=0 (48.b)
_ Since éuf and (6A°) are arbitrary, equations (48) have the solution:
Kua-R+gA’=0 (49.a)
gu=0 (49.b)

The formulas (49) represents a set of equations for an exact penalty method.
For details on exact penalty methods, see [3].

Since the correct values of A are not known in advance, a procedure must
be developed to find them, if the functional of equation (43) is to be of any use.
Until now, the algorithms developed did not require iteration if the contact area
between the two bodies remained constant. Yith the augmented Lagrangian
method, an iteration is required to compute the correct values of y and A . At
first this procedure might seem to be at a disadvantage, since extra computa-
tion is required. However, as will be shown, there are several advantages to this
approach. The system can yield a value for A within a given tolerance, and
hence, u can be computed to a specified value. This did not occur with the
penalty or perturbed Lagrangian methods. Second, the number of equations of
the system does not increase. This was not the case in the classical Lagrangian
method. Third, convergence to a specified value does not require that y-e.
This can help mitigate the severe conditioning problems associated with using a
large penalty value. Fourth, and most important, in finite element problems,
the contact area is generally not known in advance. This area must be found as
the solution progresses. Hence, an iterative procedure is always necessary for

_____




the finite element solution by the penalty, Lagrangian, and perturbed Lagran- ?.:’
gian methods previously presented. s
L) 0\.‘,

A first order update method for A can be written as in equation (50).

il

' Aesy = Ag + ugtu (50) .E:
- .'.. -
The motivation for such an updating scheme can be found if equation (45) is ;{
) written as: : )
sl
mimimize: [I(u) + Afg‘u (51.a) o
with the constraint: glu =0 (51.b) N

¢

.-...
N
5 RPATRIL]

Viewing this from a Lagrange standpoint:

() + Agfu+ (A" =A) glu=0 (52)

A typical step in the augmented Lagrangian method involves the minimization -
- i Py
- of: ,‘-1:::
3
N(u) + Algtu+ Lutggfu=0 (53) At
2 3
So, comparing equations {52) and (53), a good approximation is: t:;ﬂ:
. Mgta A’ =, - (54)
Rearranging terms, A, is found. __
. Aeer = A + pglu (55)
.
X This is exactly the updating method proposed by equation (50). ‘
Considering the two spring problem described in Figure 3 for the aug- Ry
mented Lagrangian method, the following system of linear equations results: :
ok + u o —(k+ y.)"'u'xl _ bl 11 e
-k +pu) k+u “"‘zJ B qu - Al-l J (56) o
Note that in this example, A is one dimensional and that, initially it is set to e
zero. ) X
Ao =0 (57)
] So, the equation to update A is simply: S
. Aeer = A + 4 (uy = u) (s8) =
3 Solving the linear system, and updating the value of A leads to the following -:'_"
: series of equations. ~ :;-.};-
3 = =g ‘ i
y A rErn (59.a) o2,
. k ' '.-.‘.n
:' Az = Py 14+ P #} . - (59.b) : :'_:::’;
2 '.:}\:
-13- &
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A’=k+y1+k+u+[k+pj (59-0)

\

»

Or. in general, equations (59) can be written as:

{

2 3 n-}
--wgh, & e [k ) _k I
A k+#1+k+“+[k+”+k+#J+,....+k+“ (80)
\
This has the form:
M=¢(l+a+a?+a%+,..., +an}) (61)

for the following substitutions:

= —HI. = -k
4 k+u 2 k+u (62)

An infinite geometric series, this converges to:

[ ] | ]
JN N S .. I S SEN P
"“’ll—a]'k-»,u — k|7 (63)
k+p
A requirement for convergence is that:
‘a[ <1 or k_l<1 (64)
k+pu

Therefore, it is seen that this system will converge for any positive value of u.
At convergence, the displacements can easily be found as:

[ 1 Iql
heal x |E o5
I”ZJ— g+ f2e+ul A7 |2
k |k+p k k

These values represent the exact result.

For a detailed convergence proof of the augmented Lagrangian method in
the general case, see [3]. The example previously presented displays the power
‘of the method for the following reasons. First, convergence to a specified toler-
ance is found without requiring p-+=. Second, the correct displacements and
contact forces are available without the need for extra calculations. Also note
that, in practice, the penalty parameter does not have to be held fixed during
the iteration: it can slowly increase as the solution nears convergence. Third,
the burden of accuracy does not depend directly on u but rather on the
number of iterations used to compute A. Furthermore, the algorithm does not
have to be run until A* is found, but rather it needs only to be computed until A
is within a specified tolerance of A°’. Finally, each iteration leads to an

-14-
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improved estimate of the solution.

In order to study further the convergence properties of this method, the
duality viewpoint of equation (43) will be examined. Recall that duality means
that the functional which results from the problem:

minimize: [I(u) + %u‘gg‘u ~ (86.a)

with the constraint: gfu=0 (66.b)
will lead to the system of equations: '
Ku-R+(A°)g+ uggtu=0 (87)

when the Lagrange approach is used. By invoking a convexity assumption on
the Hessian of equation (87), an equivalent dual problem can be written:

¢(A) = minimum {[Il(u) + Mgiu + %u‘gg‘u} (88)

Specifically, the dual function is used since it is a function of only one variable,
A . and hence there is a corresponding simplification in the problem statement.
The dual problem requires that the Hessian of the solution of the solution to
equations (68) be positive definite: this is a convexity assumption. Note that
from the results of the penalty method, and in fact from the results of Figure 1,
the problem is locally convex near the solution point for a reasonably large
value of u . Also worth noting is that equation (68) is not used in the solution to
the finite element problem since the minimization requires a solution of an
unconstrained problem in terms of the unknown displacements. Updating
schemes for u corresponding to equation (50) are much more difficult to

develop and use.

Using f(x(A)) to represent the standard finite element system, h(x(A)) to
represent the constraint, and x(A) as the vector which minimizes equations
(68), the dual of equation (68) can be written as:

d(A) = f (x(N)) + Mh(x(A)) + S-bt (x(\))h(x(A)) (89)
Equation (89) has the gradient:
Vd(a) = vxx(x){v,r(x(x)) + V. h(x(A)A + p¥, b(x(A)h(x(A))} + h(x(A)) (70)
= h(x(A))

[
A

The term in braces vanishes at the stationary point, because it corresponds the
first variation of the functional given by equation (45). The Hessian of the dual
is* now calculated in order to examine the convergence properties of the
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augmented Lagrangian method.
V2d =V, x(A)V. h(x())) (71)
If the term in braces of equation (70) is described as:
V. L(x(A).A) = V. £(x(A)) + AV . h(x(A)) + uV.h(x(A))h(x(A)) = O (72)
then, upon differentiating this expression one finds (73).

Vx(A)VZL{x(A).A) + VEL(X(A)A) =0 (73)
Equation (73) can be further simplified to:
Nx(A)VEL(x(A).A) + V.1 (x(A)) = 0 (74)
Finally, V,x(A) can be found by solving equation (74).
Nx(A) = =V, bf (x(A))VE L (x(A).A) (75)
Substituting this result into equation (71), the Hessian is listed in (786).
V2d(A) = =V, h! (x(A))VZ L7} (x(A).A) (76)

-1
= -V ht (x(k)){vif(x(k)) + uV h(x(A))V_ bt (x(A))] V.h(x()))

The steepest ascent formula for maximizing d(A) of equation (69) can be
written as:

Aeor = Ay + V(M) (77)
Or, by substituting the results of (70), equation.(‘??) becomes:

Arsy = Ap + ah(x(A.)) (78)
And, from reference [3], a relationship between the values of A and the conver-
gence ratio is:

——A;:‘_-:.. < r(u) = max (Il ‘#Wl- ll “#‘wl) (79)

Where W is the maximum eigenvalue of Vzd(x) , w is the minimum eigenvalue of
V2d (M), the function r(u) is the convergence ratio and u° is the optimal value of
4 . This optimal value can be computed to be:

ko= ¥N+w (80)
And, the convergence ratio at that vajue is:
ru’) = =W (81)

V+w

Similarly, the Hessian of the primal function can be computed to be:
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¥2p () = {9, B¢ (x(u)) [V K(x(u) A1) + ¥, B(x())V, b (x(u»}"v,h(x(u»} (82)

Substituting and simplifying, the Hessians of both the dual and primal function-
als become:

VZd(A) = —g {x + pgg*}"g (83)

Vep(u) = ig‘ [K+ uzz‘]-xc}-l -ul (84)

Next, consider the following rank one update formu!la:
pe (K + ugg! g =1- (1 + pg'K-1g)™ (85)
Multiplying both sides by (I + ug* K !g) on the right leads to equation (86).
pe' (K + uge')'g(l + ug'K'g) = ug'K-'g (88)
Suppose e is an eigenvector of gtK~'g with an eigenvalue a. Post-multiplying
equation (86) by e and simplifying, it can be written as equation (87).
ugt(K+ uge!)'eg(l + uc)e = uae (87)
This equation has the form:

HA(1 + puale = uae (88.a)

.Ake=age (88.b)

So, e is also an eigenvector of A. Thus g!(K + ugg’)~'g and g'K~!g have the same
eigenvectors. Using this information in equation (87) and the symbol b to
represent and eigenvalue of gf(k + ugg’)~!g. a relationship between eigenvalues

a and b can be written:

b{1+ua)=a ) (89.a)

b= 14_‘:“ (89.b)

By substituting these values, the convergence ratio is:

b
()= 2

w tH
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Clearly, as u-=, the convergence ratio goes to unity, implying arbitrarily
fast convergence. By application of the analysis of the penalty method, it is
known that from equations (13) to (28), rounding errors also play a part. Thus,
a tradeof! situation has developed. Although increasing the penalty parameter
increases the rate of convergence, it also leads to more poorly conditioned set
of equations. Since the augmented Lagrangian will converge, within certain res-
trictions, for any value of the penalty parameter it is clear that "best” value to
use is the one which will minimize the rounding errors. Thus, this optimal value
for the penalty parameter u has exactly the same form as equation (28).

As a further justification for the first order update given by equation (50),
consider the application of Newton's method, and an approximation to the Hes-
sian of the dual functional. The value of A,;,, can be thought of as minimizing
the second order expansion of the dual around A,:

de(A) = d(As) + VAN ~ &) + (A = A ) VP (AL )(A-A,) (1)

Taking the derivative and setting it equal to zero:

Va,(A) = Vd(A,) + VBd (M)A =) =0 (92)
This leads to the update formula:
Ao = A - P22 ()] o2 ) (93)

By equation (70), Vd(A.) is known, and from equation (76) V2d(A,) is also
known. Equation (83) represents the system of equations for the contact prob-
lem: this expression could be substituted into equation (93). As a further
simplification, note that for a reasonably large u. equation (83) is approxi-

mately -%. Hence, equation (93) can be expressed as:

Apey = A + ugiu (94)
This is exactly the method proposed in equation (50). .

The augmented Lagrangian procedure can be interpreted geometrically in
Figure 8. Consider the primal functional given in equation (43). By addition of
the penalty term, the system is convex near the solution, u*, A°. For a given
set of starting values for ug and Ay the solution proceeds as follows. The value
of u, is found and is used to update the Lagrange parameter A.,,; . This value
corresponds to the negative slope of the functional at the point u, . The new
value of A.,; is then used to compute a new u.,, . This process may be contin-
ued until the values u,,, 8nd A, ,, are within a specified tolerance to u’ and A° .

-18-
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Figure 6: Grar hical interpretation of the augmented Lagrangian method.

3. Finite Element Implementation

The finite element method may be used to construct solution procedures
for the four contact schemes discussed in Section 2. In this section, only the
frictionless, two-dimensional, small deformation kinematics case will be
presented. Since the algorithms for the penalty and classical Lagrange
methods are so well known, the discussion of these methods will be confined to
their relationship with the augmented Lagrangian scheme. Details on the per-
turbed Lagrangian algorithm are given in references [6] and [7].

The augmented Lagrangian method has been implemented in the finite ele-
ment program FEAP [9]. Details of the contact kinematics can be found in [6]
and [7]. In these references, the contact interface is first split into a number of
segments along an intermediate surface, as shown in Figure 7. Assuming four
node isoparametric elements, these segments are unambiguously defined by the
geometry of the adjacent elements of the bodies in contact. Figure 8 shows a
typical segment.

201

O

KXo

-
2%: %

g

{'

.
s r




AN g g - )N By

. , \
intermediate
surface

U -
-

+

Figure 7: Discretization into contact segments.

Variable

Description

Element node on body i at node j
Projection onto body i of x}
Displacement of body i at node j
Projection onto body i of u}

Normal to the contact segment on body i

described in (95).

(xf - x}).t!

_(xd-xp).t?

I x} -x}|!

| IS s AR
T T -1

Table 1: A select list of variables and their description.

£¢=(1-a')x{+a'x

The variables in equation (95) are defined by:

The notation in Table 1 is used to obtain the projection of contact segments

(95)

- (96.a)

- (96.b)
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From equations (96), the displacement can be described as:
Tt =(1-a')ul +a'ud

And, hence, the gaps in the contact segments can be represented by:
9' = (uf - T).n!
g% = (v - @?).n?

The normal n' is defined by:

n' =85®|’.t

Figure B: A typical contact segment.

(96.c)

(e7)

(98.a)
(98.b)

(99)

By applying a linear interpolation to the displacement field described by
equation (97), a consistent approximation is obtained with the four node iso-

parametric element. In the context of this approximation, the contact pressure

within each segment is a constant. Note that this approach is not based on

nodal penetration of the adjacent body, but rather an cuverage penetration

across a contact segment. Thus, in the solution to a finite element contact

problem, the constraint is satisfied in an "average" sense over a segment

instead of "point-wise” for a contact node. By using the expressions in equation
(98) for the interpolation functions g, in any of the equations (5), (27), (32) or

.....
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(43) for gtu, this averaging can be incorporated into the solution methods pre-
viously discussed.

Consider equation (5), which represents the penalty method. Assuming two
bodies in contact, the functional can be written as in equation (100).

(ut ) = (@) + ) + [ Lggda - (100)
Where the first two terms of equation (100) are of the same form as equation
(1):
I(w,) = f Wu)dv, - | pb.udv, - f t.uda, (101.a)
!1- [ 45,

M(up) =['(u) dv, -b[pb.uduz—‘g t-uda, (101.b)
[ e e

By substituting equation (98) into equation (100), the following expression is
obtained:

\¥
H’(u)=H(u)+%3/" {{i’iz-ﬁ’}-ﬁj [{iz—ﬁ‘}-i}da (102)
The kinematically admissible variations are:
V= {')1 tv(Q)-R. ¢, | 4B, = 0] (103.a)
V2= [.,z :V2{(Q)~R . g | ap, = o] (103.b)
Applying the Gateaux derivative to equation (102), and invoking stationarity:
D, i Memi= 255 TUw? + am)lanor ! + ami)lano + (104.0)
¢
[ ]
-3 d 2 iy B
5 {dv‘ [[v + anzl [v + am]] o
[ ]
[[v2+a1)2]-[v‘+am”-ﬁ da =0
=0
D'..I'I-f)z = d:z v+ any)laso- -::—(vz +anz)laec + (104.b)
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e and~fr o an)]-s)| g =0

Or, simplifying and combining these two equations the following expression is
obtained.

[
D,aH-m+D,-H-nz+#[(nz-m)-i{[v‘-ﬂ]-i} da=0 (105)

Applying the linear finite element discretization, equation {105) becomes:

’glG.i-s‘i:u[u i‘m-c‘ tc,-n,-]:O (108)
[] s t=} J=1

Where the first sum represents the standard contributions of stiflness and force
to the finite element system, and the second sum represents the contact con-
straint contribution. The vector ¢; can be expressed with reference to Figure 8

as follows.
¢, =-¥%1-a')n! (107.a)
cz = +¥%(n? - a'n!) (107.b)
cg = +%(n' - a®n?) (107.c)
ey = (1 - a?) n? (107.4)

In equation (108), the sum is taken over all of the elements representing the
discretization of both bodies for the first term, and the sum over all segments in
contact for the second term. A typical contribution of a contact element to the
system stiffness matrix can be described as: _

¢
¢
Kontact = 1 c: {01 €2 Cs 04} (108)

Cq

Which, for each segment in contact, represents a rank one update to the system
stiffness matrix.

Some difficulties are present with this kinematic formulation, particularly
when higher order interpolations are used or an extension to three dimensions
is made. The small deformation, linear kinematics implementation has a

J

4G % e T s CARARARY
AN AGIRIIGEUL
,-' .:.-".' ol h "j' 0 "- "- Y .

~a
s




LR LA

ayag By by A

PRPRENA NN

reasonable geometrical definition, as described in Figures 7 and 8, for most
cases. However, the extension to multiple contact segments along a single slide
segment, or the general application of symmetric boundary conditions is
presently unclear. Figure 9 shows some problems that may arise even for the
four node case. Here, the interpolation method breaks down because projec-
tions are not simple enough to be described by the application of of the method
shown in Figure 8.

Body 2

~

intermediate

surface .

Body 1

Figure 9: Possible problems with the slide line logic.

Furthermore, ambiguity arises in the case of higher order interpolations of
the intermediate surface. While this problem could be overcome by a complex
calculation, it is not clear that the test for penetration could be done efficiently.
For example, determining if a node is penetrating a body requires the use of a
concave clipping algorithm. For boundaries represented by polynomials greater
than first order, the calculation can be very expensive [10]. Moreover, in order
to extend this approach to three dimensions, techniques from constructive
solid geometry (CSG) would have to be employed. This means that the penetra-
tion calculations might generally take longer than the solution of the system of
equations for the entire finite element system [11].

The finite element implementation of the augmented Lagrangian method
can now be discussed in more detail. By applying the procedure given in the
last section to the functional expressed in equation (43), a finite element sys-
tem of the form of equations (108) can be derived. This system is shown in
equation (109.a) in matrix notation.

B, S, .
‘f‘{x'u‘ - r'} + im{uc'(c')‘u + c.A:} =0 (109.a)
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The equation for updating A can be written as:

A1 =N+ u(ct)a (109.b)

Several features are worth repeating about equations {109). First, the
summation extends over all of the elements representing the discretization of
the bodies in contact. Second, the contact stiffness contribution is a rank one
update of the global stiffness matrix over each segment in contact. Third, the
method is inherently iterative because the Lagrange parameter is not known
before the solution is attempted. Fourth, the interpolation across a contact
segment is done in an "average" sense, rather than "point-wise.” Finally, note
that even though the solution is iterative due to the nature of equation (109), it
is also not known in advance which segments are in contact: each loading
configuration requires control logic based on the current values of the displace-
ments. Newton's method is used to solve equations (109). The solution pro-
cedure is outlined as Algorithm 1.
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In practice, each contact segment has information containing the current
interpolation functions ¢, current Lagrange parameter A, and penalty value u.
Generally, the penalty value varies slowly from its original value to something
about ten to a hundred times larger as the solution converges. This has the
effect of tightening the constraint as the answer becomes better known while
keeping the solution réasonably well conditioned at the early stages.

The fact that the augmented Lagrangian method is a combination of both
the penalty and Lagrangian methods has already been shown. Depending on
ones viewpoint, it is relatively straightforward to extend or simplify Algorithm 1
to incorporate these cases. For the penalty method, the Lagrange parameters
can obviously be ignored, leading to a system of equations analogous to equa-
tion (109):

,‘id(l('n-R')-fsidyc’(c’)‘u:D (110)

A similar procedure holds for the perturbed Lagrangian method, since equation
(38) expresses a value for the Lagrange parameter across the contact segment.
Here, the step in Algorithm 1 which updates the Lagrange parameter may be

skipped since this item is considered constant across a given load ;:l:;T
configuration. |
.\..“

Step (11.D) in Algorithm 1 states that the ezact value of A does not have to e

be found. The user can select the desired precision. Furthermore. this preci- :_‘_Z-Z
sion is, unlike that of the penalty, classical Lagrangian or perturbed Lagrangian :'a
methods, independent of the penalty value. This penalty value, by the results of n
section 2.4, governs the rate of convergence of the augmented Lagrangian j::-:f
method. It is generally expected that results to machine precision can be ‘;_'.'-‘,j
|




.'_; ) .(
N ot
:
;.: Static Augmented Lagrangian Method q,
: 1L Setug=0.A=0 : oy
O. Fork=1,2, 3, .. until convergence do: N
A. Build the system K ;;om 2nd Ryyptem - h ‘:,
B. For s = 1 to Spa ‘ ',?;
1. Determine ¢* , g* = (c¢*)fuf _ g
2. Check to see if the segment is in contact: _.
3 It F' > £] : . ’-
& _\
then the segment is not in contact Ciod
else _ E
a. Calculate the stiffness contribution: K& n;0c = uc*(c? ), i::
b. Calculate the residual contribution: Riniece = —(A2) ¢* :
2 c. Add the contact KZpsact + Rimsact 10 system Kpiem « Reystem '
to get Kiotar + Reotar .-_
! C. Solve the system for the displacement increment.: t
,-E Kiotar 00 = Regear = Keotar W :
) D. Check for convergence:
| if || Kot W = Regear || < tolerance e
.::: : ‘ then announce convergence and stop. \ .
‘: E. Update the displacement field: u,,; = u, + Au,,, :::.
F.For s = 1 to Sy '.
Update the Lagrange parameters: Af,, = A + u(e® )y, 4, e
G. Next k, go back to step IL. _i
3 3
X Algorithm 1: Description of the static augmented Lagrangian method.
'_1‘ obtained after only a few iterations. ‘ ,
- Since the algorithm depends on determining the state of a contact segment {".‘}
in step (11.B.2), it should be noted that the convergence properties discussed in , :
section 2.4 might not always apply. This is because, as segments change state -
2 from "not in contact” to "in contact” or vice-versa, the tangent matrix becomes ;f-
" discontinuous. For problems involving practical engineering applications, these 2
X discontinuities last only during the initial iterations and the solution quickly
converges.

The augmented Lagrangian method can easily be extended to handle prob-
. lems involving dynamic contact. Algorithm 2 presents a solution of the problem
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Dynamic Augmented Lagrangian Method
Initialize %u, %4 %i -
. Fort = At, 2At, 3At, ... until Tyay do:
A Set ug, Ag =0
B.Fork =1, 2, 3, ... until convergence do:

1. Build the system ‘K sem. ‘ Moyntem 804  Ryyptem

2. For s = 1 to Sy do:

a. Determine ¢* , g* = (¢’ )'u}

[

b. Check to see if the segment is in contact: If [g' > 2;-;-

then the segment is not in contact else

i. Calculate the stiffness contribution: K¥nsee; = uc®{(c® ) u,

ii. Calculate the residual contribution: R&niecs = —()\:)'c‘

ili. Add the contact Klniacs + Riontact t0 system K piem + * Rypstem
to get Kiotar + Riotas

3. Build ‘Kdmmic = ‘Kwaum + ao‘"-ymm
4. Calculate the residual:

‘Ruwm' = 'Reotas — * Keogasu — ‘ucyum a,{u. - ‘u} -agfu- a,‘ii]

5. Solve the system for the displacement increment: fKymnamic Au = ‘RUM“

8. Update the current configuration: u,,, = u; + Au

7. Check for convergence: .

if [il‘R.m, = ' Kiotar Ug+1 — ‘Myypeem’ ]| < tolerance| then N

."\'»:-

a. announce convergence in k: ‘*!u = u,,, ".:}_Z-:
o

7,
)

b. Update the velocity and acceleration fields:

v

[

.
.
«
.
5008

e q

e s

4l = aoltﬂu- tu] - ug‘l'l - a.,‘ii )

.
l':'
s )

trig=tg + agtﬁ + 07"‘ﬁ

¢
PR A

A
"

o,

c. Go back to step II. -’:;.:.-
9. For s = 1 to Sy O
Update the Lagrange parameters: Af,, = A + u(c® ) u,,, .
10. Go back to to step IL.B Y
ity
Algorithm 2: Description of the dynamic augmented Lagrangian method. i‘.-:‘



The parameters in Algorithm 2 are defined by:

2
a20.50 8= o.zs{o.s + a} (111)

-1 =8 g, =Ll 5. =1_ =2_

a5=A-é—-{%-— ]u,:At[l- ] a, = aAT

in the time domain by the Newmark method. Note that for linear elastic prob-
lems, steps which involve forming Ky stem 8nd Ryypiem could be moved out of the
loops in both Algorithms 1 and 2.

Below, the two spring problem is again considered for a suddenly applied
load. A comparison with the exact results in Figure 10 shows excellent agree-

ment.
(2 1 1
I2):4»;; —(k + )] 3 8
Keystem = —(k + ) k+ J My pntem = %‘m %m, (112)
This system leads to the following collection of matrices:
' f2 R
_[2k+p, ~(k + )] 3™ 8™
xdvncmtc‘-(k.‘.#) k+”]"’ao%m %-m. (113)
o th [y
0 2k + 4 =(k +u)l "1 1
Ruymamic = -1 l_(k + ) k+u ltuz —Ak[_ll - (114)
[2 1 ] [ [ ] ]
E'n F’n Lull u, '1.11 u,
g o i
The initial conditions are assumed to be:
[ 8]
"l] lo! [nﬂll lo! ‘oﬁxl 7
w =lo] paal bl ] |2 (115
Furthermore, the system constants are taken to be:
a=—é— ﬁ=% k=1 m=1 g=-1 (118) - ~
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Figure 10: Comparison of exact and augmented Lagrangian resuits.

4. Examples g
This section contains examples of the augmented Lagrangian solution - .
method for both the static and dynamic cases. The examples presented here vy
are compared to work done by previous researchers. In particular, the aug- :‘_':
mented Lagrangian method is compared to the results of references [6] and [7] '-;’-\.
for the perturbed Lagrangian approach, reference [15] for the dynamic case :‘:&;
and reference [14] for the Hertz solutions. "
The augmented Lagrangian method was applied to the system of a rigid :_,:
punch into an elastic foundation, illustrated in Figure 11. The finite element ‘_:
mesh is successively refined in order to get an idea on the convergence charac- :::'.::-.
teristics of the system. Using information from reference [7], the following L‘::
parameters were used: )
Epunch = 10° ¥onen = 0.0 E punasion = 10° ¥ pungasion = 0.3 (117.2) '
Lpunch = 20 L geundation = 58 D foundation = 22 (117.b) <l
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i
Figures 12 and 13 display the results of applying the penalty, perturbed e
Lagrangian and augmented Lagrangian methods to the three block problem. - \

Figure 12 shows the results after 1 iteration of each of the methods. Note that :‘
the augmented lagrangian method gives accurate results over a much wider 'f::'{-'
range of penalty parameter values. The converged results are shown in Figure ::::-\:::

13. In this case, the augmented Lagrangian approach always yields the correct —

results, while the other methods only approximate the solution for smaller :'_:j’,‘_:_
penalty values. Table 2 displays the comparison on the number of iterations for -;\’
the three methods, using a penalty value of u = 107. Observe that even though ,'_\'_:%
the solutions are improved over the standard penalty and perturbed Lagran- -',:’ =
gian methods, the values in Table 2 show that little extra work is required. =

Method Mesh 1 | Mesh2 | Mesh 3 -

penalty 3 8 5 ;'.-I.-
perturbed Lagrangian 2 4 8 N
augmented Lagrangian 2 4 8 :f-';f:

[ 1
Table 2: Iteration results for the rigid punch problem. :{;
&
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Figure 14: Finite element mesh for the Hertz contact problem.

In order to further illustrate the augmented Lagrangian method, the finite
element system in Figure 14 was studied. This mesh represents a sphere in con-
tact with a rigid wall. The parameters for this system are:

E=10° v»=0.3 p=0.01 R=8.0 (118)

The study of a static analysis involved three different load values applied to the
top of the sphere. Results of the loading, compared to the classical Hertz solu-
tion are illustrated in Figure 15. An iteration count comparing the three
methods can be found in Table 3. Each of these method used a penalty value of
4 = 107. A dynamic analysis was also carried out, assuming that the sphere was
given an initial velocity of 0.1 downward. The results displayed in Figure 18
represent the maximum impact values. In this dynamic analysis, only the aug-
mented Lagrangian method obtained reasonable results.

Method iterations

penalty 8
perturbed Lagrangian 5
augmented Lagrangian 6

Table 3: lteration results for the Hertz contact problem.
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5. Recommendations for further work

This section contains a list of possible extensions to the solution method
and its associated algorithms. In particular, proposals are made which would
improve the rate of convergence of the algorithm, make the slide line computa-
tions more efficient and extend the algorithm to cover new problem domains.

Using equation (93), a second order updating scheme could be added to
the augmented Lagrangian method. By comparing equations (83) and (84), the
following scheme could be developed.

-1 R
-[Wd(k;)] = Vp (u) + ul {(119)

Thus, the iteration corresponding to equation (83) is obviously:
Ay =+ [P0 + 192 () (120)

As the computation proceeds, values are found for p(u) and Vp(u) = A, + pu
These values could then be used to generate an approximation to V?p(u). The
need to use second derivatives is eliminated entirely if one chooses to solve the
contact problem by some quasi-Newton methods such as the DFP or BFGS. See
reference [4] for more details on these methods.

A further enhancement might be to extend the slide line contact logic. As
was mentioned in Section 3, the logic is not well defined when multiple segments
are in contact with a single surface. For four node isoparametric elements, the
extension is straightforward. However, an extension to cover three dimensional
problems would entail the use of a clipping algorithm to determine if segments
were in contact. Essentially, the algorithm is cubic in the number of nodes for
this case, but if linear elements are used, a proper implementation could
reduce the required computation significantly. The extension to cover higher
order elements is less clear. It is believed, however, that by using techniques
from constructive solid geometry and exploiting the convex hull properties of
the finite element mesh, a reasonably efficient method could be developed.

A third area which needs further work is the development of algorithms
which include friction on the cosxtact surface. In particular, methods which
develop consistent tangent matrices need to be devised. The addition of fric-
tional contact to the algorithms presented here would greatly enhance their

generality.

Finally, the contact algorithms should not be limited to small deformation
kinematics. All of the solution efforts that have been described here need to be
evaluated for situations in which motions on the contact surface are finite.
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8. Summary and Conclusions :'_‘):.’-‘
An augmented Lagrangian method for the solution finite element contact \'

problems offers several advantages over the standard penalty, classical Lagran- 2

gian or perturbed Lagrangian methods. By using the augmented Lagrangian g

ST

method, the user has direct control over the accuracy of a given problem, since
it is the number of iterations that control the tolerance of the solutions. The
value of the penalty parameter controls the rate of convergence. Expressions .

- have been presented, based on error considerations, which may be used as a
guide to selecting a reasonable penalty parameter.

RS0

i
P

The algorithm for the augmented Lagrangian method can be simplified to .
incorporate both the standard penalty and perturbed Lagrangian Methods. ',:j.'_'_‘
Furthermore, this method is applicable to both static and dynamic problems. ‘
The results presented in section 4 show that the method compares very well to
work done by previous researchers. Convergence is quite fast, even in cases
where the other methods fail.
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